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ABSTRACT 
In this paper, we analyse the behaviour of the solution of the Navier-Stokes equations near the corner of 
the driven cavity where the moving band touches the wall. At this point, the solution is singular. Since 
the singularity does not depend on the Reynolds number, it is sufficient to study the problem in the case 
of infinite viscosity, which is governed by the Stokes equations. We present an analytical asymptotic 
solution near the corner. Furthermore, numerical results are given, which were gained by an efficient 
multigrid algorithm. We will see that, for decreasing meshsize, the numerical solution converges to the 
derived analytical solution near the corner. 
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DERIVATION OF THE ASYMPTOTIC SOLUTION 

The plane laminar flow of incompressible fluids is described by the Navier-Stokes equations. 
In the limit of an infinite viscous fluid these equations are reduced to the Stokes equations which 
can be written as: 

(1) 

where ψ denotes the streamfunction and ω the vorticity in the domain Ω. With the velocities u, 
v in x- and y-direction, respectively, ψ and ω are defined by: u: = ψy, v = — ψx, ω:=vx — uy. The 
system (1) of differential equations can also be written in the form of the biharmonic equation: 

∆∆ψ = 0 in Ω (2) 

which is well known in mechanics. 
The system (1) is coupled by boundary conditions. Specifying the vector of velocities on the 

boundary, we get conditions for both ψ and the normal derivative ∂ψ/∂n, but no condition for 
to. Now, as a model problem we consider the lid driven cavity that is specified on the unit square 
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Ω = [0, 1]2 by the boundary conditions: 

(3) 

with boundaries I, II, III, IV as shown in Figure 1. As usual ∂ψ/∂n denotes the normal derivative. 
We get a laminar flow which is driven on the side I with a constant velocity. Thus, we have 
defined the so-called driven cavity problem. It is well known that this problem possesses 
singularities in ω at the corner points I x II and I x IV where one side is driven. Now, we will 
figure out a solution for (1) and the boundary conditions on sides I and II as in Figure 2, but 
neglecting the sides III and IV. Of course, the solution of this weaker problem is not unique. 
However, any solution will describe a flow at the corner I x II and, assuming that this flow is 
dominated by local conditions only, our solution must be a good approximation for the initial 
problem in some suitable region near the corner. Thus, we want to derive an asymptotic analytical 
solution near the corner point I x II. For this purpose, consider the given problem in terms of 
polar coordinates as shown in Figure 2. Following the argumentation in References 8 and 10 
we choose the general trial function: 

ψ(r,Φ) = R(r)
.λ(Φ) (4) 
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The chosen function (4) yields a separation of the variables r and Φ where the function R(r) is 
analytical and λ(ω), is some linear combination of transcendent functions. With this in mind, 
we rewrite the boundary conditions (3) in polar coordinates as: 

R(r)
.X(0) = 0 (5) 

(7) 

(8) 

These conditions are inhomogeneous. But condition (7) results in R(r) ~ r which in turn 
transforms (2) into the following linear ordinary differential equation for x: 

x(4) + 2.x(2) + x = 0 (9) 
(see References 8 and 1). So, we have chosen the function ψ(r,Φ) = R(r)

. X(Φ) (see Reference 10) with: 

R(r) = r (10) 
X(Φ) = c1

. sin(Φ) + c2
.Φ . sin(Φ) + c3

.cos(Φ) + c4
. Φ .cos(Φ) 

Thus, we get the following boundary conditions for x: 

X(0) = 0 
X(Π/2) = 0 

(11) 

and, hence, receive values for the coefficients ci as follows: 

(12) 

Therefore, we get the solution: 

(13) 

In Figure 3, we show the levels of the asymptotic solution ψ(r,Φ) of (13) near the corner I x II, 
which can be identified as the streamlines of the flow. The left upper corner in Figure 3 corresponds 
to the corner point I x II in Figure 1. 

THE ALGORITHM 

The given problem can be solved by discretizing the biharmonic equation (see References 2 and 6) 
or by using the system of equations (1) (see References 9 and 4). In system (1), we obtain two 
Poisson equations that can be solved efficiently by standard multigrid methods (see Reference 
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5). The crucial point is the coupling of these equations by the boundary conditions. So, we have 
to compute co-values on the boundaries, and this has to be done very carefully. Our method is 
very close to that of Reference 9. But we discretize the system (1) by a finite-element-method 
using bilinear pagoda functions. Thus, on an equidistant grid on the unit square 

= [0. 1] x [0, 1] with meshsize h = 2-2 in x- and y-direction, we get the following discrete 
problem for the inner points of 

Lh
.ωh = fh/ω 

(14) 
Lh·ψh + Ih·ψh = fh/ψ 

Lh denotes the standard 9-point finite-element-stencil of the Laplacian operator and Ih the 
corresponding stencil for the identity operator. On the finest grid, we have = 0 . On 
the coarser grids, and denote the restricted residuals with respect to ωh and ψh. 

To compute the values for ω on the boundaries, we discretize the equation ∆ψ = -ω on the 
boundary. On the northern boundary I (see Figures 1, 2 and 4), for example in point P, this 
yields the equation: 

(15) 

where the term —(1/h) on the right hand side emerges from the Neumann boundary condition 
ψn = 1 on the boundary I. On the other boundaries, this term equals zero. Analogously, we 
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obtain for each corner point (see Figure 5) the equation: 

(16) 

where the factor — (1/2h) arises from the Neumann condition on side I of the cavity. 
The equations (15) and (16) hold on the finest grid. On the coarser ones, the right hand sides 

equal the restricted residuals on the boundaries. The equations (15) and (16) must be solved 
for to in the point P. Note that all values of ψ on the boundaries are zero. 

Furthermore, in an iterative process, we get rather large changes of the boundary values of 
to due to the fact that the values of ψ are weighted by the factor 1/3/h2 in (15) and (16). Therefore, 
slight changes on inner points have large effects on the boundary values. To avoid oscillations 
and divergence of our multigrid algorithm, we perform one relaxation step for boundary points 
and the neighbouring inner points simultaneously. Thus, we solve (15) in P and the system of 
equations (14) in Q (see Figure 4) simultaneously. In the case of a corner, the corresponding 
equations in P, E, S and SE (see Figure 5) are solved simultaneously. Thus, not only the values 
on the boundary but also the values of the neighbouring inner points are computed in 
Gauss-Seidel fashion as shown in Figure 6. 

With bilinear interpolation and the weighted restriction as the transfer operators between the 
grids, we use the Galerkin approximation and get the same discrete operator on every grid. We 
use the usual multigrid method with v1 pre- and v2 post-smoothing steps over the boundary as 
explained above and over the remaining inner points. We can employ the V-cycle or the W-cycle 
of the multigrid method. The scheme of the multigrid cycle is shown in Table 1. The superscript 
b denotes the modified operators on the boundary and H — 2·h the meshsize of the coarser grid. 

To prove the quality of our algorithm, and for reasons of comparison, we have implemented 
and solved the model problem given in Reference 9. 
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Table I (v1,v2,y)MG-cycle 

if h =½ 
Solve the corresponding system of linear equations for the 8 boundary points and the one inner point simultaneously 

else 
1. Relax v1 times 

(a) on the boundary and the neighbouring inner points 

(b) on the inner points 

2. Compute the residuals 

3. Perform the restriction 

4. ωH = 0.0, ψH = 0.0 

5. Apply the (v1, v2, y)MG-cycle y times on 
6. Correction of the values on the fine grid 

7. Relax v2 times 

NUMERICAL RESULTS 

First, we consider the asymptotic convergence of our algorithm. In Table 2, the measured 
dominant factor in the expansion of the error of the numerical solution is shown. It is given by 
(see Reference 9): 

(17) 

The norm is the global discrete L2-norm. Thus, we see that the global discretization error is of 
the order 0(h2). In the same way as in Reference 9, we have also measured the convergence 
factors by Mises vector iterations. The results are shown in Tables 3 and 4 for the V- and 
W-cycle, respectively. We see that for the V-cycle the convergence factors are dependent on the 
meshsize h. Only for the combinations of v1 = 2, v2 = 1 and v1 = 2, v2 = 2, the V-cycle converges 
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Table 2 Asymptotic convergence of the discrete 
solution 

H 

½ 
¼ 
1/8 
1/16 

1/32 
1/64 
1/128 

h 

¼ 
⅛ 
1/16 

1/32 

1/64 
1/128 
1/256 

Rψ 

2 . 2 8 
2 . 1 2 
2 . 0 5 
2 . 0 2 
2 .01 
2 .01 
2 . 0 0 

Rω 

2 . 0 4 
2 . 0 5 
2 . 0 3 
2 . 0 2 
2 . 0 1 
2 . 0 0 
2 . 0 0 

Table 3 V-cycle 

(v1, v2) 

⅛ 
1/16 
32 
1/64 

128 
1/256 
S12 

(1,0) 

1.65 
2.14 

13.9 
— 
— 
— 
— 

(2.0) 

0.13 
0.22 
0.53 
1.14 
— 
— 
— 

(3,0) 

0.07 
0.13 
0.14 
0.24 
0.51 
1.00 
— 

(1,1) 

0.14 
0.27 
0.41 
0.55 
0.70 
0.85 
0.98 

(2,1) 

0.08 
0.09 
0.20 
0.27 
0.36 
0.44 
0.52 

(2,2) 

0.04 
0.05 
0.08 
0.12 
0.16 
0.20 
0.20 

Table 4 W-cycle 

(v1, v2) 

⅛ 

1/16 
1/32 

1/64 

128 
1/256 
512 

(1,0) 

0.28 
0.34 
0.35 
0.36 
0.44 
0.53 
0.57 

(2,0) 

0.13 
0.18 
0.19 
0.21 
0.22 
0.22 
0.23 

(3,0) 

0.06 
0.08 
0.07 
0.07 
0.07 
0.07 
0.08 

(1,1) 

0.14 
0.16 
0.17 
0.18 
0.19 
0.19 
0.19 

(2,1) 

0.06 
0.07 
0.07 
0.07 
0.07 
0.07 
0.07 

(2,2) 

0.03 
0.04 
0.05 
0.05 
0.05 
0.05 
0.06 

on all grids. In the case of the W-cycle, the convergence factors are dependent on the meshsize 
only for the two combinations v1 = l,v2 = 0 and v1 = 2, v2 = 0. Therefore, these results are 
comparable to those of Reference 9. 

NUMERICAL EXPERIMENTS 

In this section, we present the results of our numerical experiments obtained by the multigrid 
algorithm that was explained in the previous section. We want to show the correctness of the 
analytical solution by comparison with the best numerical solution which is assumed to be a 
very good approximation to the unknown exact solution. 

Let us have a look at ω . First, in Figure 7 we see that the computed ωh grows to very high 
values at the corners I x II and I x IV. However, the values of ωh in the rest of the domain are 
small. Table 5 lists the values in the corner point with the meshsize h = 2-n of the used grid 
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Table 5 Values of ω at the corner, grid Ωn,n with meshsize 2-n 

n 

ω 

2 

13.86 

3 

27.71 

4 5 6 7 

55.43 110.9 221.7 443.4 

8 

886.8 

9 

1774 



SINGULARITY AT THE ANGULAR POINT OF THE LID DRIVEN CAVITY 55 

Ωn,n. With halving the meshsize h, the value of ωh in the corner point doubles. This means that 
ωh is proportional to 1/h, i.e. ω ~ 1/r. Furthermore, let us study Figure 9. There, the 
computed ωn together with the asymptotic solution ω from (13) along the driven side I are 
shown. We see that the numerical solution and the asymptotic one coincide in some region near 
the corner point I x II. Figure 10 shows both the computed ωh and the asymptotic solution ω 
from (13) on the wall (side II in Figure 1). Here, the numerical solution also converges to the 
asymptotic one apart from some oscillatory behaviour (see Figure 10) which is due to the pollution 
effect of the singularity (see for example Reference 1). 

Second, in our asymptotic solution (13) ω becomes zero for tan(Φ0) = π/2, i.e., Φ0 = 57.52°. 
In Figure 8, we see some levels of the computed solution ωh, especially the level with ωh = 0.0 
which encloses an angle Φ with the driven side I (see also Figure 1). In Table 6, we have listed 
some measured angles of the computed solution on the grid Ω8,8. The angles are taken at points 
of lines which are at distance d (in Table 6 measured in multiples of the meshsize h = 2 - 8) from 
the driven side I and where ωh changes its sign. For small values of d, again we can see the 
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Table 6 Angles, enclosed by the null level and the driven side I 

d/h 

Φ[0] 

1 

63.4 

2 

53.1 

3 

63.4 

4 

58.0 

5 

55.0 

6 

59.7 

7 

57.3 

8 

55.5 

9 

58.6 

10 

57.0 

11 

55.7 

12 

58.0 

13 

56.8 

14 

58.7 

15 

57.7 

pollution effect of the singularity at the corner, because the values of Φ near the corner oscillate 
about f>o- But all other values are in quite a good accordance to Φ0 of the asymptotic solution. 
Therefore, the coefficients of (13) are the correct ones. Now, we have a look at ψ. The computed 
solution ψh is shown in Figure 11, and in Figure 12 we show its levels. The asymptotic solution 
ψ of (13) in Figure 3 and the computed solution ψh of Figure 12 naturally allow only qualitative 
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comparisons. We see that Figure 3 is the left upper sector of Figure 12. Again, the asymptotic 
solution is equivalent to the numerical one. 

CONCLUSIONS 

In the previous section, we have shown that our mathematical model is confirmed by our 
numerical experiments. But does the asymptotic solution (13) describe the physical reality? To 
answer this question, we want to make an estimation of the force F which is necessary to drive 
the fluid in the cavity by using the solution (13). Since we look at the laminar flow of a Newton 
fluid, Newton's law holds and provides for the shear stress Π = F/dx = η·∂u/∂y, where u denotes 
the velocity in x-direction, η denotes the viscosity of the fluid (coordinate system like in Figure 
2), and dx is some element of length in our two-dimensional case. We look at Π on side I. Then, 
∂u/∂y can be expressed by: 

(18) 

because the velocity in y-direction is v = 0 on side I. Therefore, the whole force F for an interval 
[0, L], where the asymptotic solution (13) is valid, is given by: 

(19) 

We see that the integral does not exist: F becomes an infinite force. This means that the driven 
cavity is not a realistic physical problem. To prevent the force F from growing to infinity we 
have to integrate only up to a distance d of the corner point I x II and get 

(20) 

In this way, we modify our mathematical model, because we allow that the boundary conditions 
(3) are no longer valid in a region of size d around the corner point I x II. Hence, our derived 
solution (13) is also not valid in this region. We have to allow a small slot between the driven 
band and the wall so that a little fluid can flow into the cavity. We assume that this occurs only 
in a small region of size of d around the corner and that the solution is not disturbed farther 
away. Then, a good approximation of the whole force to drive the lid is given by 

(21) 

where the second term is independent of d, and Fd grows logarithmically with d-1. Thus we 
expect that the force to drive the band should increase logarithmically with decreasing distance 
between the moving band and the wall in a physical experiment. The numerical results are 
shown in Table 7 where the integral fint= alongside I was computed. By comparison 
with the analytical integral Fd of (20), the numerical proportionality constant C can be evaluated 
and is about the analytical value C = 4.0 · π/(π2 — 4.0) = 2.141. 

Table 7 Values of the integral taken at side I for various grids with meshsize h and 
with L = ¼ 

h 

Jint 
c 

32 
4.665 
2.243 

64 
6.020 
2.171 

128 
7.437 
2.145 

1/256 
8.890 
2.136 

1/512 
10.35 
2.134 
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Table 8 Angles, enclosed by the null level and the driven side I for a laminar flow with Re = 20 

d x 10-3 

Φ[0] 
2.61 

68.8 
3.75 

61.1 
4.95 

67.3 
6.21 

62.9 
7.54 

60.0 
8.94 

58.0 
10.4 
56.6 

12.0 
55.5 

13.6 
58.8 

15.3 
57.7 

17.1 
56.9 

19.1 
56.1 

21.1 
55.5 

23.2 
55.0 

We note that the asymptotic solution (13) is also valid in the viscous case. To show the 
correspondence with the numerical results, we computed a solution for a Reynolds number 
Re = 20 on a graded mesh with 128·128 control volumina. The computation was performed 
with the Navier-Stokes solver LEARN7. The smallest control volume was of size h = 0.001 and 
positioned at the corners of the cavity. Table 8 shows some angles Φ that the null level of the 
vorticity ω of the numerical solution encloses with the driven side I. This angle is a sensitive 
quantitative indicator that demonstrates the coincidence of the asymptotic solution with the 
numerical results in a region near the corner. Again, the angles are about the given angle 
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Φ0 = 57.52° of the developed asymptotic solution (13) in a small region around the left corner 
of size of d ≈ 0.02. The fact that we computed only a solution with a very low Reynolds number 
is not a deficiency in principle, because we have to use finer grids with increasing Re. Then, the 
computed solution will show the same local properties in a small region around the corner like 
the solution above with Re = 20. But the region, where the asymptotic solution is valid decreases 
with Re. For example, with doubling Re we have to halve the meshsize in order to keep the 
Peclet number constant and, therefore, to get the necessary resolution for the numerical solution 
around the corner. In Figure 13, the null level of ω of the computed solution on an equidistant 
grid with 64·64 control volumina and Re = 5 is shown, and in Figure 14, the null level of Ω of 
the solution on a grid with 128·128 control volumina and Re = 10. The line which encloses 
exactly the angle Φ0 with the driven side I indicates that again the two numerical solutions are 
well described by the analytical solution (13) in a small region around the corner (except for 
the pollution effects for the point on the boundary and next to the boundary). Therefore, we 
can conclude that the derived asymptotic solution (13) is valid as well in a small region around 
the corner of the driven cavity in the case of viscous fluid flows. 
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